Stock Market Simulation using Support Vector Machines

ثبت نشده
چکیده

The aim of this research is to analyse the different results that can be achieved using Support Vector Machines (SVM) to forecast the weekly change movement of the different simulated markets. The different simulated markets are developed by a GARCH model based on the S&P 500. These simulated markets are grouped by a main parameter: high volatility, bearish trend, bullish trend and low volatility. The inputs retained of the SVM are traditional technical trading rules used in quantitative analysis such as Relative Strength Index (RSI) and Moving Average Convergence Divergence (MACD) decision rules. The outputs of the SVM are the degree of set membership and the market movement (bullish or bearish). The design of the SVM algorithm has been developed by Matlab and SVM-KM. The configuration for the SVM shows that the best results are achieved in simulated markets with high volatility; also results are good in trend simulated markets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Stock Market Trend using Prototype Generation Classifiers

Currently, stock price forecasting is carried out using either time series prediction methods or trend classifiers. The trend classifiers are designed to predict the behaviour of stock price’s movement. Recently, soft computing methods, like support vector machines, have shown promising results in the realization of this particular problem. In this paper, we apply several prototype generation c...

متن کامل

Stock Market Analysis and Prediction

Stock market analysis is a widely studied problem as it offers practical applications for signal processing and predictive methods and a tangible financial reward. Creating a system that yields consistent returns is extremely challenging and is currently an open problem as stock market prices are extremely volatile and vary widely both within a given stock and comparatively amongst many stocks....

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

A Hybrid Machine Learning System for Stock Market Forecasting

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators...

متن کامل

Correlation Between Turkish Stock Market and Economy News

Is the concept of stock market speculations, related with the news in the news papers? This study mainly focus on the correlation between economy news from one of the highest circulation rate news paper in Turkey and Istanbul stock market closing values. Data set is collected from the web page of news paper in natural language and text mining technique, term frequency – inverse document frequen...

متن کامل

Balancing Recall and Precision in Stock Market Predictors Using Support Vector Machines

Computational finance is one of the fields where machine learning and data mining have found in recent years a large application. Neverthless, there are still many open issues regarding the predictability of the stock market, and the possibility to build an automatic intelligent trader able to make forecasts on stock prices, and to develop a profitable trading strategy. In this paper, we propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015